www.endrich.com

Bloß nicht bequem werden im Alter

Als wir in unserer Firma diese Woche drei Mitarbeiter verabschiedet haben, weil sie in Rente gehen wollten, und eine verdiente Mitarbeiterin war 30 Jahre bei uns und gehörte sozusagen

zum bilanzierten Anlagevermögen der Firma, kam mir die Fragwürdigkeit der derzeitigen Rentenregelungen in den Sinn.

Maschinen schreibt man ab, weil sie im Vergleich zu neuen Maschinen langsamer sind, weil sie vielleicht unpräziser arbeiten, weil sie vielleicht nicht mehr die Vorteile neuer Maschinen aufweisen. Aber Menschen verschrotten, ausmustern, nur weil sie ein gewisses Alter erreicht haben? Lässt sich der Schatz an Erfahrungen, an Kenntnissen, aber auch an Gelassenheit bei der Arbeit und auftretenden Problemen überhaupt kurzfristig durch eine Neueinstellung ersetzen?

Und bei dem Betroffenen selbst — wie muss er sich fühlen, wenn nach jahrzehntelanger Arbeit seine Meinung und seine Arbeitskraft plötzlich nicht mehr gefragt sind? Es mag sein, dass ein Älterer nicht mehr so geläufig mit Computerprogrammen hantieren kann. Nicht, weil er das nicht wollte oder nicht gerne in Anspruch nehmen würde, sondern weil er es einfach nicht gelernt hat. Ein Gegenbeispiel: Seit es Taschenrechner gibt, ist das Kopfrechnen völlig aus der Mode gekommen. Wer kann noch drei oder vier Zahlen addieren oder multiplizieren oder wenigstens abschätzen, welches Ergebnis herauskommen soll? Dies ist nämlich die andere Seite unseres Lebens. Man wird auf Grund der angebotenen Hilfsmittel einfach träger.

Zur Ehrenrettung der älteren Mitmenschen sei aber gesagt, dass sich sehr viele die nötigen Kenntnisse über VHS oder andere Institutionen angeeignet haben und eifrig im Internet surfen, twittern oder mit anderen sozialen Netzwerken kommunizieren.

Nach Meinung von Gehirnforschern fängt das Älterwerden bereits mit etwa 18 Jahren an, denn mit der Leistungsfähigkeit des Gehirnes geht es spätestens ab dem 18. Geburtstag bergab. Nie wieder wird man so schnell lernen können wie in diesem Alter, meinen renommierte Hirnforscher. Die Rentengrenze mit 63 oder 65 Jahren wurde vor vielen Jahrzehnten willkürlich festgelegt, als die Menschen im Schnitt 10 Jahre früher gestorben sind und man davon ausging, dass sie nur wenige Jahre nach ihrer Pensionierung sterben würden. Aber unsere Lebenserwartung ist

dank Medizin und Ernährung gewaltig gestiegen und damit auch die Ansprüche an das Leben.

Ein verrücktes Beispiel sind z.B. die Partner- oder Heiratswünsche selbst älterer Männer und Frauen, die deutlich über 65 liegen. Es ist doch ein Zeichen, dass diese Personen noch nicht mit ihrem Leben abgeschlossen haben und die Hoffnung haben, es noch ein zweites Mal zu versuchen. Wenn ich morgens in mein Büro fahre und dann bereits mutmaßliche Rentner mit dem Hund oder ohne spazieren gehen sehe, erfasst mich ein Mitleid, denn sie sind eigentlich von unserer Gesellschaft ausgeschlossen. Sie dürfen nicht mehr mitspielen im täglichen Trubel der Arbeit am Arbeitsplatz, ihr Wissen ist nicht mehr gefragt und ihre Meinung spielt überhaupt keine Rolle mehr.

Möglicherweise werden Sie jetzt protestieren und sagen, der oder die Betroffene haben ein Anrecht, nach vielen Jahren des Arbeitens, des Schuftens usw. ihren Lebensabend zu genießen, aber ich frage mich trotzdem: Genießen sie es?

Es gibt einen uralten Spruch: Wer rastet, der rostet. Ich bin der Meinung, dass dies ein kluger Spruch ist, denn vielfach geht mit dem körperlichen Rasten auch ein geistiges Rasten einher. Eigentlich schade darum.

Natürlich gibt es auch viele ältere Menschen, die sich neue Aufgaben geschaffen und gefunden haben, sei es in sozialen Dingen in Vereinen, und ohne ihre Mitarbeit wäre unsere Gesellschaft ziemlich schlimm dran. Um dies zu fördern, sollte man die älter werdenden Menschen auf ihre Pensionierung wenigstens vorbereiten und ihnen Wege zeigen, wie sie noch etwas aus ihrem Leben auch nach der Pensionierung machen können. Enkel hüten oder mit Altersgenossen Wanderungen zu unternehmen, ist dies wirklich eine befriedigende Tätigkeit?

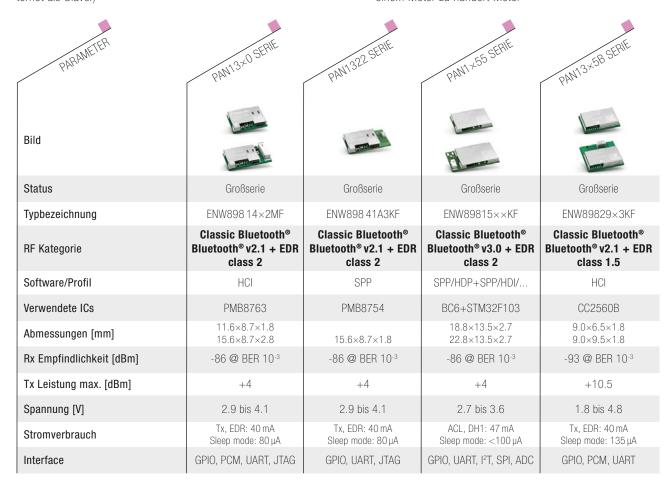
Unsere Familienminister hätten noch viel zu tun und sollten darüber nachdenken, wie das Wissen und die Arbeitskraft älterer Menschen, und hier meine ich nicht nur die körperliche, sondern auch die geistige, der Gemeinschaft erhalten werden kann und damit ihr Wohlbefinden gesteigert werden könnte. Viele Krankheiten sind nämlich auch seelisch bedingt, weil die Betroffenen nur noch täglich ihre Zipperlein zählen und sich ausschließlich mit diesen beschäftigen.

Mit freundlichen Grüßen

W. Endrich

BLUETOOTH®-FUNKMODULE FÜR HOHE DATENRATEN BIS 3 MBIT

BESCHREIBUNG

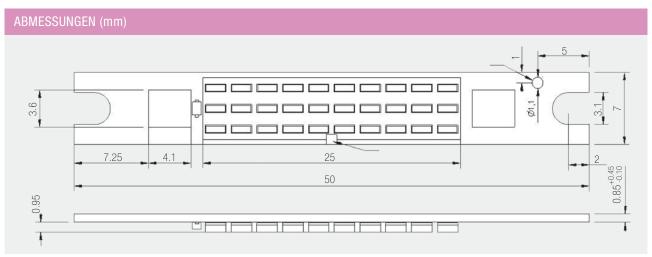

Je nach Profil können größere Netzwerke mit Scatternets gebildet werden. (Unter einem Scatternet versteht man eine Gruppe von unabhängigen und asynchronen Piconets, die mindestens ein Bluetooth-Gerät gemeinsam enthalten. Es können maximal 10 komplett volle Piconets in einem Scatternet zusammengeschlossen werden. Die Gateway-Geräte agieren gegenüber dem eigenen Piconetz als Master gegenüber dem Master des Scatternet als Slave.)

Endrich und Panasonic kooperieren seit 1. 4. 2014 im Bereich Wireless Devices. Panasonic Industrial Devices Sales Europe ist ausgewiesener Spezialist im Bereich von Funkmodulen und bietet eine umfangreiche Palette von Bluetooth®-Modulen mit unterschiedlichen Profil-und Stack-Optionen für nahezu jede Anwendung.

Die in dieser Ausgabe der Endrich News vorgestellte **Classic-Bluetooth®-Technologie** eignet sich besonders für Anwendungen mit hoher Datenrate (bis zu 3 Mbit) bei einer Netzwerkgröße bis zu acht Knotenpunkten.

EIGENSCHAFTEN/ANWENDUNGEN

- » Ideal geeignet um serielle Kabel zu ersetzen. Hierzu wird das SPP (Serielles Port Profil) verwendet.
- » Robuste Verbindungen, auch in Umgebung mit hohem Rauschen durch 80 Kanäle (je 1 MHz breit), adaptive Frequenzsprungverfahren und robustem Modulationsverfahren
- » Reichweiteneinstellung (mit Hard-und Software), von unter einem Meter zu hundert Meter


CITIZEN ELECTRONICS

PREISWERTE SINGLE-CHIP LED MODULE 3 W UND 6 W - E-104-MC3/6

ENDRICH Bauelemente bietet preiswerte Single-Chip Module mit 3 W oder 6 W aus eigener Produktion an. Diese Module stellen eine preiswerte Alternative zu den hochwertigen Citizen Modulen CL-L104 (3 W/6 W) dar. Auf dem Modul werden hochwertige Citizen SMD LEDs CLL620 eingebaut, wodurch lange Lebensdauer und hohe Lichtqualität garantiert sind. Sie eignen sich besonders hauptsächlich für Innenraumbeleuchtungen.

EIGENSCHAFTEN

- » Weiße High-Power LED für allgemeine Beleuchtungszwecke
- » Single-Chip Modul basierend auf SMD LEDs CLL600/620
- » 3 W und 6 W Klasse
- » Verfügbare Farbtemperaturen: 2700 K/3000 K/3500 K/4000 K/5000 K
- Typische Werte bei 3000 K:3 W (21 LED), 350 mA, 333 lm, 104 lm/W6 W (30 LED), 700 mA, 650 lm, 97 lm/W
- » Low-Cost Version alternativ zur Citizen CL-L104
- » Baugleich zur Citizen CL-L104
- » Farbwiedergabewert: Ra=85 typ.

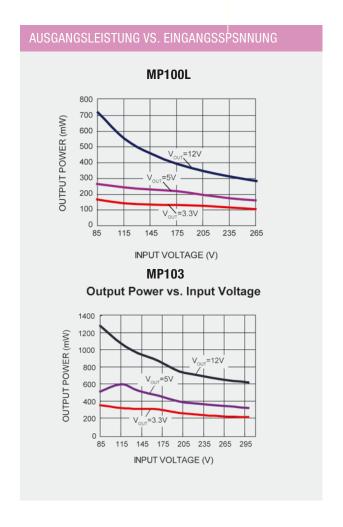
MAXIMALWERTE WERTE											
PARAMIL		WE									
	3W Type	6W Type									
Verlustleistung P _D	7.14 W	10.2 W									
${\it Durchlassstrom}\ {\it I_{_{\rm F}}}$	700 mA	1000 mA									
Durchlass-Impulsstrom, I _{FP}	840 mA	1200 mA									
Sperrspannung V _R	5 V	5 V									
Betriebstemperatur T _{OP}	-30~+85 °C	-30~+85 °C									
Lagertemperatur T _{STG}	-40~+100 °C	-40~+100 °C									
${\bf Sperrschichttemperatur}\ {\bf T_{_j}}$	120 °C	120 °C									

PARAMETER	OW TYPE					OW TYPE)				
PARAINI	E-104MC3 (3W TYPE		Min.	Тур.	Max.	E-104MC6 (6W TYPE)		Min.	Тур.	Max.
Spannung V _F [V]	I _F =350 mA (7×50 mA)		8.1	9.0	9.9	I _F =700 mA (10×70 mA)		8.5	9.45	10.4
Sperrstrom I _R [µA]	V _R =5 V				700	V _R =5 V				1000
Therm. Widerstand Rj-s [K/W]	junction-solder			4.3		junction-solder			3.0	
	$I_{\rm F}\!\!=\!350$ mA (7×50 mA)	2700K	240	320	401		2700K	475	635	794
		3000K	250	333	416		3000K	494	659	824
Lichtstrom ϕ_{v} [Im]		3500K	251	334	419	I _F =350 mA (10×70 mA)	3500K	497	662	829
		4000K	274	344	429	(10/1/01/1/)	4000K	543	680	851
		5000K	266	356	444		5000K	527	705	878
Farbwiedergabewert Ra	I _F =80 mA (single LED CLL600)		80	85		I _F =80 mA (single LED CLL600)		80	85	

MP100L/MP103 - EasyPower™ OFFLINE-REGLER <1 W

8

MP100L Eval Board


MP103 Eval Board

HAUPTEIGENSCHAFTEN

- » Universal-AC-Eingang ($85V_{AC}$ bis $305V_{AC}$)
- » Keine Induktivität
- » < 100 mW Standby Power
- » EMV verträglich
- » Wenig externe Bauteile
- » Einstellbare Ausgangsspannung 1.5V bis 15V
- » Thermische Überlastschutz
- » Kurzschlussfest

Power Grid MP100L CB R, GND VCC CFB R, Cout Rent Cout Rent Cout O GND O GND

ANWENDUNGEN

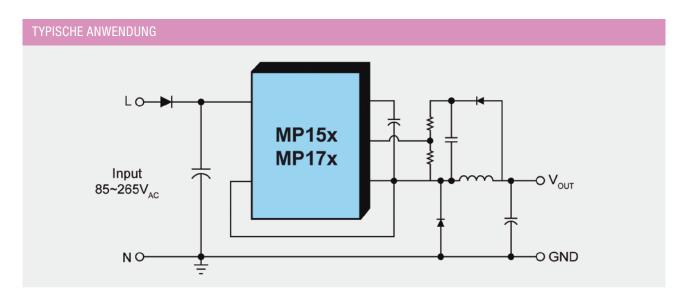
- » Haustechnik, z. B. Dimmer
- » AC/DC Stromversorgung für Funkmodule (ZigBee, Z-Wave, etc.)
- » Kleingeräte

	TYPENE	SELECHNING.	V _I s	Por	V _{RE}	Vour	*	Rds(or)	BAUFORM
MP1	100L	85 V 305 V	max. 400 mW	1.235 V	1.5V 15V	500 V	9.5 Ω	SOIC8E	Offline-Regler ohne In- duktivität für Low Power Anwendungen
MP1	103	85 V 305 V	max. 800 mW	1.235 V	1.5V 15V	700 V	-	SOIC8E	Offline-Regler ohne Induktivität, höhere Leistung, mit externem BJT

MP15x/MP17x — EasyPower™ REGLER FÜR LOW POWER-ANWENDUNGEN

ANWENDUNGEN

- » Kleingeräte
- » Weiße Ware
- » Heimelektronik
- » Industriesteuerungen
- » Standby Power

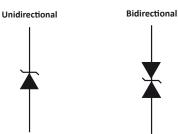


MP150 Evaluation-Board

HAUPTEIGENSCHAFTEN

- » Primary-side constant voltage (CV) control, supporting Buck, buck-boost, boost and flyback topologies
- » Integrated high-voltage MOSFET
- » <150 mW no-load power consumption
- » Frequency foldback
- » Maximum frequency limitation
- » Peak current control
- » High-voltage start-up current source

N	PENBEZECHNUNG	Vic	BA	WIELL SCHALTFRED	JENZ ISW	lon CCM	MAX.	J. MAX.	OUTMAX		Rds(on)	BANFORM
MP150	85 V 265 V	Regler	56 kHz	290 mA	200 mA	120 mA	150 mW	500 V	30 Ω	450mA	SOIC8 TSOT23-5	Primärseitiger 2W Offline-Regler
MP157	85 V 265 V	Regler	64 kHz	640 mA	360 mA	225 mA	100 mW	500 V	10 Ω	900mA	SOIC8 TSOT23-5	Primärseitiger 6 W Offline-Regler
MP156	85 V 265 V	Regler	56 kHz	290 mA	200 mA	130 mA	30 mW	500 V	20 Ω	450mA	SOIC8 TSOT23-5	Primärseitiger 3 W Offline-Regler
MP155	85 V 265 V	Regler	56 kHz	290 mA	200 mA	130 mA	100 mW	500 V	20 Ω	450mA	SOIC8 TSOT23-5	Primärseitiger 3 W Offline-Regler
MP174	85 V 265 V	Regler	56 kHz	660 mA	400 mA	250 mA	100 mW	700 V	15 Ω	800mA	S0IC8 TS0T23-5	Primärseitiger 4,5 W Offline-Regler



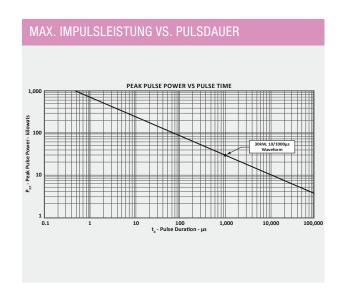
SM30KPAN-SERIE FÜR IMPULSE BIS ZU 30.000 WATT

EIGENSCHAFTEN

- » Kompatibel zu IEC 61000-4-5 (Surge): 48A, 8/20µs - L3(Line-Ground), L4(Line-Line) & L1 (Power)
- \sim 30.000 W Impulsieistung per Line (tp = 10/1000µs)
- » Unidirektionale und bidirektionale Konfigurationen
- » Einfach zu montieren
- » Vorzugstyen 30 V bis 75 V, andere Spannungen auf Anfrage
- » Klemmzeit (0 V bis V(BR)Min) < 100ps, für unidirektionale und 5 ns für bidirektionale Konfiguration
- » RoHS konform
- » Bleifreie Silberkontaktierung
- » zulässige Reflow-Löttemperatur: 260°C-270°C
- » Entflammbarkeit gemäß UL 94V-0

MAXIMALWERTE

Die neue **SM30KPAN-Reihe** von Protek Devices sind Hochleistungsüberspannungsschutzkomponenten zum Schutz von Stromkreisen vor Überspannung in Anwendungen, wo durch Relais-Treiber und Motoren (Start/Stopp) elektromagnetische Felder (EMF) erzeugt werden. Die Komponenten bieten sekundären Blitzschutz für AC/DC-Stromleitungen.


Die Serie besteht aus mehreren Komponenten, von SM30KPA30AN bis zu SM30KPA75AN. Die Arbeitsspannungen reichen von 30 bis 75 Volt, um einer Vielzahl von Design-Anforderungen zu entsprechen. Die Bauelemente sind für Pulsspitzen von 30.000 Watt (Wellenform 10/1000 µA) ausgelegt und mit der IEC 61000-4-5 (Surge) kompatibel.

Die Komponenten ermöglichen einen uni- und bidirektionale Einsatz sowie eine einfache Montage auf einer Leiterplatte . Die Klemmzeit liegt bei < 100 ps für unidirektionale und 5 ns für bidirektionale Versionen. Auch diese Serie entspricht den RoHS-Anforderungen.

Die SM30KPAN Serie ergänzt die von ProTek Devices im letzten Monat veröffentlichte SM15KPAN Serie, die für Arbeitsspannungen von 17 bis 220 Volt und Pulsspitzen von bis zu 15.000 Watt konzipiert ist.

ANWENDUNGEN

- » Relais-Treiber
- » Motoren (Start/Stopp) Back EMF Schutz
- » Blitzschutz für Baugruppen
- » Sekundär-Blitzschutz für AC/DC

SM30KPAN-SERIE FÜR IMPULSE BIS ZU 30.000 WATT

ELEKTRISCHE KENNDATEN/REIHE @ 25°C

Typen - unidirektionale Konfiguration

TYPENBEZECHNUNG	BAUTEILMARW	NEWN SPERP NEWN SPERP SPANNING V	MIN DURGE MIN DURGE SPANNUN min.	BRUCH 3V _{PR} VV	MAX, LECKS	TEMP. KOEFF. V B. OV BR (MV) C)	MAX. KLEMMSPAIN. N/1 @ 10/1000µS, 1, p.
PAM2SM30KPA30AN	30A	30.0	33.3	50	5000	34 mV/°C	55.2 V @ 543.0 A
PAM2SM30KPA36AN	36A	36.0	40.0	50	2000	41 mV/°C	61.8 V @ 485.0 A
PAM2SM30KPA43AN	43A	43.0	47.8	50	1000	50 mV/°C	73.0 V @ 410.0 A
PAM2SM30KPA48AN	48A	48.0	53.3	5	250	56 mV/°C	77.4 V @ 388.0 A
PAM2SM30KPA58AN	58A	58.0	64.4	5	20	68 mV/°C	92.4 V @ 325.0 A
PAM2SM30KPA64AN	64A	64.0	71.1	5	10	76 mV/°C	104.0 V @ 294.0 A
PAM2SM30KPA75AN	75A	75.0	83.3	5	10	89 mV/°C	119.4 V @ 251.0 A

Die aufgeführten Typen sind Vorzugstypen. Andere Spannungen können beim Hersteller angefragt werden.

Typen - bidirektionale Konfiguration

rypen – bidirektionale konfiguration											
TYPENBEZECHNUNG	BAUTELLMAR	NEWN SPERR NEWN SPERR SPANNUNG	MIN DURCH MIN DURCH SPANNUN	BRUCH.	MAX. LEOKSTROM TEMP. KOEFF. Vor NAX. KLEMMSPANN OV DE TEMP. KOEFF. VOR NAX. KLEMMSPANN OV DE TOTTOOOVE						
			min.	@ I _T							
PAM2SM30KPA30CAN	30C	30.0	33.3	50	5000	34 mV/°C	55.2 V @ 543.0 A				
PAM2SM30KPA33CAN	33C	33.0	36.7	50	5000	41 mV/°C	58.6 V @ 512.0 A				
PAM2SM30KPA48CAN	48C	48.0	53.3	5	250	56 mV/°C	77.4 V @ 388.0 A				
PAM2SM30KPA58CAN	58C	58.0	64.4	5	20	68 mV/°C	92.4 V @ 325.0 A				

Die aufgeführten Typen sind Vorzugstypen. Andere Spannungen können beim Hersteller angefragt werden.

USB-PROGRAMMIER-KIT FÜR MICRONAS' HALL-EFFEKT-SENSOR-FAMILIEN

Das neue USB-Programming-Kit von Micronas zur benutzerfreundlichen und flexiblen Programmierung verschiedener Hall-Effekt-Sensor-Familien wurde speziell für den Einsatz im Entwicklungslabor unserer Kunden entwickelt und stellt eine effiziente, leicht zu handhabende und kostengünstige Lösung dar.

Micronas, anerkannt als zuverlässiger, weltweit agierender Partner für intelligente, sensorbasierte Systemlösungen im Automobil- und Industrieumfeld, bietet ihren Kunden ab sofort einen neue, einfachere und kostengünstige Möglichkeit zur Programmierung verschiedener Hall-Sensor-Familien für Laborzwecke an. Das neue, winzige USB-Kit hat lediglich die Größe eines handelsüblichen USB-Sticks und kann direkt und unkompliziert in den Entwicklungslaboren von Kunden oder Forschungseinrichtungen zum Einsatz kommen.

Das neue USB-Kit kann zur Programmierung aller Mitglieder der Sensorfamilien HAL 18xy, HAL 24xy, HAL 36xy und HAL 38xy sowie für künftige Produkte verwendet werden.

Diese Sensoren kommen in den unterschiedlichsten Anwendungen im Bereich Automobilelektronik zur Positionserkennung oder zur

Winkelmessung zum Einsatz, u.a. bei Drosselklappen, Gaspedal, Abgasrückführung (EGR), Neutralgangerkennung, Kurvenlicht und Lenkmoment-Anwendungen.

Auch im Bereich Industrieelektronik können die programmierbaren Linear-Sensoren HAL 18xy und HAL 24xy zur Strommessung, in Joysticks, Wippschaltern und in zahlreichen weiteren Anwendungen zur erweiterten Wegmessung eingesetzt werden.

Um die Leistung des Sensors innerhalb der Kundenanwendung zu optimieren, ist eine optimale Programmierung des verwendeten Sensors notwendig. Während die Programmierbarkeit bereits durch das Produkt selbst gewährleistet ist, bietet Micronas nun zusätzlich eine entsprechende kostengünstige Programmierhardware an.

Im Gegensatz zu gängigen Lösungen auf dem Markt, besticht das sehr kleine USB-Kit durch seine kompakte Bauform und seine flexiblen Anschlussmöglichkeiten.

Diese einfache Möglichkeit zur Programmierung von Micronas Hall-Sensoren hat den Vorteil, dass die Kundenanwendung direkt im Labor getestet werden kann. Hierzu muss das Programmier-Kit lediglich via USB-Schnittstelle mit einem PC verbunden werden und kann dann für jede beliebige Anwendung verwendet werden, da es über 12 lötbare Anschlusspins verfügt.

Die Programmiersoftware für die unterschiedlichen Sensorfamilien kann nach erfolgreicher Registrierung im Micronas Online-Serviceportal http://service.micronas.com kostenlos heruntergeladen werden. Das neue USB-Kit ist kompatibel mit Vorgänger-Software-Versionen.

Für weitere Informationen ist zuständig: Dr. Wolf \cdot Tel. +49(0)7452-6007- 23 \cdot e-mail: t.wolf@endrich.com

ZENTRALE

ENDRICH Bauelemente Vertriebs GmbH · P.O.Box 1251 · D-72192 Nagold T +49 (0) 7452 6007-0 · F +49 (0) 7452 6007-70 endrich@endrich.com · www.endrich.com

VERTRIEBSBÜROS IN EUROPA

Frankreich:

Angers: T +33/2 41 80 33 54 · v.rousseau@endrich.com Paris: T +33/1 46 05 99 13 · e.cosperec@endrich.com

Österreich & Slowenien

Vienna: T +43/1 66 52 52 521 · a.schwaha@endrich.com

Schweiz - Novitronic:

Zürich: T +41/44 306 91 91

info@novitronic.ch

Spanien:

: T +34/93 217 31 44

spain@endrich.com

Bulgarien:

Sofia: T +359 / 2 929 46 17

· veka@engineer.bg